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A B S T R A C T

This paper addresses the issue of hydrodynamic model identification from recorded tank test data, for a
prototype wave energy device. The study focusses on nonlinear Kolmogorov–Gabor polynomial models, with
linear models also used as a baseline reference. Six different experimental data sets are employed for model
identification and validation, all derived from a JONSWAP input sea state. Compared to identification on
numerical data, this study shows that the determination of model structure and orders is not so straightforward,
but that consistent and useful computationally efficient models can be obtained. For the particular tests
undertaken, in which the prototype device generally behaves as a wave follower, the nonlinear models only
show very marginal performance improvement over the linear ones.

1. Introduction

Mathematical modelling of wave energy converters (WECs) has
many uses, including simulation of device motion, optimisation of
the WEC geometric shape, power production assessment and as a
basis for model-based control design. In all these cases, it is impor-
tant to describe how the body moves in the water, interacting with
the waves propagating on the fluid surface. The hydrodynamic laws
(mass, momentum and energy conservation laws) are the foundation
for a complete description of the WEC-fluid interaction, but their
solution represents a very complex and challenging problem. Different
approaches to WEC-fluid interaction modelling, such as computational
fluid dynamics (CFD) and linear potential theory (LPT), lead to different
mathematical models, each one characterised by different accuracy
and computational speed. It is crucial to realise that a mathematical
model is always an approximation of the natural world, and a model
that better describes the reality is not necessarily the best model;
the assessment of a model depends on its purpose and application
(Pintelon and Schoukens, 2012). Indeed, on one side, fully nonlinear
CFD models, based on hydrodynamic laws, are able to describe the full
range of hydrodynamic effects, but are very computationally expensive;
for example, in three-dimensional numerical wave tanks (NWTs), 1 h
of simulation would require approximately 1000 h of computation
(42 days!) (Davidson et al., 2016). Therefore, the high accuracy of
CFD models is not sufficient to justify their use in all WEC model
applications. Indeed, the use of CFD models, in order to perform
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seasonal WEC power production calculations, would require decades
of computation. Furthermore, a WEC mathematical model, utilised for
model-based control, has to be able to produce an output simulation
in real-time, certainly beyond the CFD possibility. On the other hand,
LPT models (which represent the most common state-of-the-art for WEC
modelling) are based on the assumptions of inviscid fluid, irrotational
flow, small waves and small body motion, which completely remove the
hydrodynamic nonlinearity of the WEC-fluid interaction. Linear models
have good computational speed, but are not able to properly describe
nonlinear hydrodynamic effects, such as nonlinear restoring force, vis-
cosity, nonlinear excitation force, vortex shedding, which are relevant
in some WEC power production conditions, since WECs are designed
to operate over a wide range of wave amplitudes, and experience large
motions. Therefore, it is desirable to develop hydrodynamic models
with characteristics that lie somewhere between the CFD and LPT
computational/accuracy extremes; ideally, a good compromise able to
describe the most important nonlinearities of the real system, without
requiring excessive computational time (Giorgi et al., 2016b; Penalba
et al., 2017; Wolgamot and Fitzgerald, 2015).

One way to construct a mathematical model of a process under
investigation involves breaking the system into subsystems and, by
applying the appropriate physical laws, building up a mathematical
description between the key variables. In the case of highly complex
systems, the procedure may take an unacceptable amount of time and
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Nomenclature

ARX Autoregressive with exogenous input
CFD Computational fluid dynamics
DT Discrete-time
FSE Free surface elevation
KGP Kolmogorov–Gabor polynomial
KGP(𝑝) KGP model with maximum polynomial

order 𝑝
LF Loss function
LPT Linear potential theory
MAPE Mean absolute percentage error
MSE Mean squared error
NARX Nonlinear autoregressive with exogenous

input
NRMSE Normalised root mean-squared error
NWT Numerical wave tanks
PTO Power take off
RWT Real wave tank
SI System identification
WEC Wave energy converter

may provide a very complicated model, which could be difficult to
utilise. It may also be difficult to accurately parameterise such models.
This paper utilises an alternative pragmatic framework for hydrody-
namic model construction, based on wave energy recorded data and
system identification (SI) techniques.

The use of SI techniques in WEC modelling is not a novelty, they
have been applied by some researchers to add various specific nonlinear
terms to linear hydrodynamic models, in order to improve the model
accuracy. In (Zurkinden et al., 2014), a nonlinear hydrostatic restoring
term, identified from real wave tank (RWT) data, is introduced into
the numerical model. In (Paparella et al., 2016), a viscous matrix
is identified from RWT data, in order to improve the linear model
describing a three-body hinge-barge device. In (Jakobsen et al., 2016)
and (Zurkinden et al., 2014), a nonlinear viscous term is identified from
RWT and introduced into the numerical model of a hemispherical WEC.
In (Folley et al., 2007), the dynamics of small seabed-mounted bottom-
hinged WECs (which have the same physical principle of EB Frond,
WaveRoller, Oyster and BioWave WECs) are studied, by introducing
a nonlinear viscous term identified from RWT data. In (Bhinder et al.,
2011, 2012) (Bhinder, 2013) a viscous term is identified from NWT, in
order to describe the dynamics of floating and surging WECs. In (Atluri
et al., 2009), the drag coefficient of a floating plate, moving in heave,
is estimated by utilising NWT experiments. In (Giorgi and Ringwood,
2017), different drag coefficients are identified from NWT data, in the
case of a floating heaving point absorber. Other studies have extended
the use of SI techniques from the identification of specific nonlinear hy-
drodynamic terms to the whole linear/nonlinear hydrodynamic model,
by utilising NWT data (Davidson et al., 2015, 2016) (Ringwood et al.,
2016) (Giorgi et al., 2016a; Giorgi, 2017) (Armesto et al., 2014). The
passage from NWT data to RWT data, for the identification of whole
linear hydrodynamic models, can be found in (Bacelli et al., 2017)
(Coe et al., 2016). In (Cho et al., 2018), a whole nonlinear hydro-
dynamic Hammerstein–Wiener model is identified from RWT data. In
this work, whole hydrodynamic models, based on a Kolmogorov–Gabor
polynomial (KGP) structure, are identified from RWT data.

The SI framework is characterised by an iterative sequence of four
steps, i.e. experimental data gathering, fitting criterion and identifica-
tion algorithm selection, model selection (model structure selection and
model order selection), and model validation, as shown in Fig. 1. At the
end of the SI procedure, a hydrodynamic parametric model is provided.

Fig. 1. Closed-loop block diagram to identify models from recorded data.

In the wave energy community, the two main sources of experimen-
tal device data are simulated experiments generated in a NWT, and
real experiments generated in a RWT. All NWTs are implemented by
utilising mathematical models, which necessarily are an approximation
of the real system under study (e.g. the approximations introduced
from the turbulence model). Furthermore, the approximated equations
utilised are resolved with numerical techniques, which introduce ad-
ditional numerical errors. As a result, a NWT simulation does not
completely correspond to the time-evolution of the real system. On
the other hand, a RWT allows the observation and study of the real
system, without the introduction of any modelling error. However, in
the RWT case, measurement errors are present. See (Davidson et al.,
2016) (Giorgi, 2017) (Ringwood et al., 2016) for more details regarding
advantages and disadvantages of NWT and RWT experiments.

The Wavestar WEC, investigated in this paper, is a well known
device within the wave energy community, and has been repeatedly
studied in recent years. Different kinds of models have been utilised
to describe its behaviour, some of them purely linear, based on the
assumption of linear potential theory (Hansen and Kramer, 2011)
and, more recently, nonlinear terms have been introduced into the
models. In (Zurkinden et al., 2014), a nonlinear hydrostatic restoring
moment, described by a cubic polynomial function, is introduced into
the model. In (Zurkinden et al., 2014) and (Jakobsen et al., 2016), a
drag term is introduced by utilising Morison’s equation. The accuracy
of these nonlinear WEC models show some improvement, over their
linear counterparts, especially for peak displacement but, at the same
time, viscous drag moments may not be manifested in the case of
a simple passively damping power take off (PTO) (Zurkinden et al.,
2014). (Giorgi and Ringwood, 2016) examines the influence of the
nonlinear Froude–Krylov force on the dynamics of the scaled Wavestar
WEC utilised in this paper.

The remainder of paper is laid out as follows; Section 2 explains
the RWT experiments used to produce the system identification data,
and Section 3 describes the process of identifying the model parameters
from the RWT gathered data. In Section 4, the structure of the utilised
linear and nonlinear models is outlined, while Section 5 describes the
salient points of model validation. Section 6 shows the results of the
proposed procedure for the case of the scaled Wavestar WEC and,
finally, conclusions are drawn in Section 7.
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Fig. 2. Scaled Wavestar WEC tested at Plymouth. The arrow shows the hydraulic
cylinder used to measure the body displacement and to apply, during the tank
experiments, the PTO force described by Eq. (1).

2. Wave tank experimental data gathering

2.1. Wave tank facility specifications

The data utilised for the current paper have been collected during a
period of four weeks in September 2013, through the MARINET access
program at the COAST Laboratory of Plymouth University, UK (COAST,
2018). The RWT is 35 m long by 15.5 m wide and with an adjustable
depth floor, which can be set with a depth up to 3 m (the data utilised
in this paper were recorded with a 3 m depth floor). At one end of
the wave tank, 24 dry-backed flap wavemakers of 2.0 m hinge depth
are installed, each of them individually controlled for wave generation.
The presence of an absorbing beach, at the other end of the wave tank,
significantly reduces the amplitude of reflected waves.

2.2. Device specifications

The scaled Wavestar WEC studied is a point-absorber composed of a
hemispherical float having a diameter of about 1 m, rigidly attached to
a 2 m length arm, as shown in Fig. 2 (Jakobsen, 2015, 2014). The total
weight of the float-arm system is 130 kg. The WEC is attached to the
bridge at the facility via a mounting frame. The WEC is constrained to
have a single degree of freedom: the rigid float-arm structure rotates
in pitch around a fixed hinge, located 1.69 m above the mean free
surface elevation (FSE). A hydraulic cylinder is attached to the support
frame, roughly halfway down the arm (see Fig. 2), with the purpose of
applying a PTO force, 𝑓𝑐𝑦𝑙, described by:

𝑓𝑐𝑦𝑙 = −𝐾𝑐𝑦𝑙𝛥𝑐𝑦𝑙 −𝐷𝑐𝑦𝑙�̇�𝑐𝑦𝑙 (1)

where 𝐾𝑐𝑦𝑙 = 50 N∕m, 𝐷𝑐𝑦𝑙 = 100 Ns/m are the stiffness and damping
coefficients, respectively, utilised in the tank experiments, 𝛥𝑐𝑦𝑙 is the
hydraulic cylinder displacement and �̇�𝑐𝑦𝑙 is the hydraulic cylinder
velocity. The WEC displacement is measured as the extension of the
hydraulic cylinder (Jakobsen, 2014), where 𝛥𝑐𝑦𝑙, measured by the
sensor, is positive when the cylinder extends and, consequently, when
the float enters into the water. However, it is desirable having a
variable, representing the body displacement, which is positive when
the float emerges from the water and negative when entering the water;
therefore, the body displacement is conventionally defined as 𝑦 = −𝛥𝑐𝑦𝑙.

Fig. 3. Relative position of the WEC and the FSE probe (top view) (Jakobsen, 2014).

Table 1
𝐻𝑠 and 𝑇𝑝 of wave JONSWAP spectra used for experi-
ments 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 and 𝐸6. In each experiment,
the peakiness factor 𝛾 is equal to 3.3.
Exp. name 𝐻𝑠 [m] 𝑇𝑝 [s]

𝐸1 0.124 2
𝐸2 0.184 2.5
𝐸3 0.245 3
𝐸4 0.369 2.5
𝐸5 0.490 3
𝐸6 0.720 4

2.3. Free surface elevation characteristics

The input variable, utilised for the mathematical model, is the FSE
available at the center of mass of the float, the measurement of which
is problematic, since the body occupies that position. This problem
is overcome by measuring the FSE at the side of the float, on a line
parallel to the wavefront and passing through the center of mass of
the float, as shown in Fig. 3. In this way, it is possible to obtain
the FSE elevation at the center of mass of the float (plus the waves
radiated by the body). Six different RWT experiments are utilised for
the WEC modelling (i.e. 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 and 𝐸6). The FSE of each
experiment is a realization of different irregular sea states characterised
by a JONSWAP spectrum with peakiness factor 𝛾 = 3.3. The significant
wave height, 𝐻𝑠, and peak wave period, 𝑇𝑝, of the different experiments
are shown in Table 1. In Fig. 4, it is possible to see the time evolution
of the FSE and body displacement for experiment 𝐸1.

The nonlinear interaction between the body and the water is
strongly dependent on the extent of the time-varying wetted body
surface. Since the body displacement alone is not sufficient to provide
an indication of the variation in the wetted body surface, it is more
useful to take into consideration the relative float heave displacement,
𝑦𝑟ℎ, defined as 𝑦𝑟ℎ = 𝑦ℎ−𝜂, where 𝑦ℎ is the float heave displacement and
𝜂 the FSE at the center of mass of the float. Indeed, 𝑦𝑟ℎ provides a more
accurate measure of the amount of the body that is submerged into the
water. By using the geometric information from the float-arm system,
it is possible to convert the hydraulic cylinder displacement, 𝛥𝑐𝑦𝑙, into
the heave float displacement 𝑦ℎ. Fig. 5 displays the relative float heave
displacement for experiment 𝐸1. Fig. 5(a) shows the relative float heave
displacement time evolution, while Fig. 5(b) shows the relative float
heave displacement probability distribution.

In the six experiments utilised in this paper, the relative float heave
displacement 𝑦𝑟ℎ is, for the majority of the time, contained between
−0.1 and +0.1 m, as shown in Figs. 5 and 6. The reduced 𝑦𝑟ℎ (compared
to the vertical float dimension) is a consequence of the applied control
strategy, described by Eq. (1), and of the values of the PTO coefficients
𝐾𝑐𝑦𝑙 and 𝐷𝑐𝑦𝑙, utilised for the tank tests, which result in the ‘wave
following’ behaviour of the device. In the case of 𝑦𝑟ℎ = −0.1 m, the
body cross-section has a radius of 0.467 m, which corresponds to a
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Fig. 4. Signals time evolution for experiment 𝐸1.

Fig. 5. The body displacement alone does not provide a sufficient indication of the
variation in the wetted body surface, it is more useful to take into consideration the
relative float heave displacement 𝑦𝑟ℎ = 𝑦ℎ − 𝜂. (a) Time evolution of 𝑦𝑟ℎ for experiment
𝐸1. (b) Probability distribution of 𝑦𝑟ℎ for experiment 𝐸1.

cross-sectional area 𝐴1 = 0.685 m2. On the other hand with 𝑦𝑟ℎ =
0.1 m, the cross-section has a radius of 0.502 m, which corresponds
to a cross-sectional area 𝐴2 = 0.792 m2. Fig. 6(b) shows the two
cross-sectional areas in the case of 𝑦𝑟ℎ equal to 0.1 and -0.1. The
relationship 𝐴1∕𝐴2 = 0.87, which represents a rare extreme case in
the six experiments utilised, suggests that the average hydrodynamic
nonlinearities involved with the change of the cross-sectional area
are modest. Indeed, for a heaving body, if the cross-sectional area is
uniform, the restoring force has a linear relationship with the body
displacement (the restoring coefficient is given by 𝐾 = 𝜌𝑔𝐴, where 𝜌 is
the water density, 𝑔 the gravitational acceleration and 𝐴 the constant
cross-sectional area) (Falnes, 2002).

3. Fitting criterion and identification algorithm selection

Given the experimental data and a parametric model structure (Nor-
ton et al., 2010), characterised by the parameter vector 𝜽, it is necessary
to identify some parameter values �̂�, in order to obtain the ‘best’ model

Fig. 6. In the six experiments utilised in this paper, the relative float heave displace-
ment is, for the majority of the time, contained between −0.1 and +0.1 m, which
corresponds to a circular cross-section with radius between 0.467 and 0.502 m. (a)
Geometric dimensions of the float in metres (side view). (b) Float cross-sections (top
view).

able to describe the data. A way to quantify the model performance
is provided by the use of a loss function (LF), 𝐽 (𝜽), (also denoted
fitting criterion or error metric), between the experimental data and
the model prediction. Therefore, given the experimental data, a model
structure, and a LF, each parameter vector value produces a singular
scalar number, which represents the model performance. One of the
most common and utilised LFs is the mean squared error (MSE) (Ljung,
1999). By changing all possible parameter values, 𝐽 describes a multi-
dimensional surface (in general multimodal), having a global minimum
and multiple local minima. The objective of the identification algorithm
is to find the parameter values �̂� which minimise 𝐽 , in order to identify
the best model able to fit the experimental data. If the model output
is a linear function of 𝜽 and the MSE is used as a fitting criteria, then
𝐽 (𝜽) is a quadratic function with an unique minimum and an analytical
solution exists (linear optimisation), given by:

�̂� = (𝜱T𝜱)−1𝜱T𝐲 (2)

where 𝜱 is the regression matrix and 𝐲 the observation vector (Soder-
strom and Stoica, 1989) (Draper and Smith, 1998) (Nelles, 2001). In
this paper, the minimisation of the LF is not computed directly using
Eq. (2), because the use of 𝜱T𝜱 increases the possibility of obtaining
an ill-conditioned problem (Ljung, 1999) (Norton, 2009) (Sauer, 2012).
Instead, the regression matrix is factorised as 𝜱 = 𝑄𝑅, where 𝑄
is an orthogonal square matrix and 𝑅 an upper triangular matrix
(QR factorisation method). In this way, the least squares solution is
computed directly from 𝜱, without forming 𝜱T𝜱 (Golub and Van Loan,
2012) (Sauer, 2012) (Giorgi, 2017). On the other hand, if the model
output is nonlinear in 𝜽 then, in general, 𝐽 (𝜽) is a multimodal function;
no analytical solution exists and numerical optimisation is required (a
nonlinear optimisation algorithm has to be selected). We note that a
model can have a nonlinear input/output relationship but be linear in
the parameters.
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4. Model selection

The choice of a model structure, in order to obtain a correct de-
scription of the relationship between input and output data, is an
important and difficult step. Adopting a SI approach offers considerable
flexibility, with both linear and nonlinear potential model parametrisa-
tions, regarding the desired complexity/fidelity trade-off. The identified
parametric model should (ideally) be able to capture the essential
nonlinear dynamics but retain a sufficient simplicity that allows the
model to be run in real time. Considering the discrete-time (DT) nature
of sampled data from experiments, the majority of system identification
techniques are based on discrete-time models (Ljung, 1999). Discrete-
time modelling uses signals only specified at the discrete time instants
𝑡 = 𝑘𝑇𝑠, where 𝑇𝑠 is the sampling period and 𝑘 is an integer. In this
paper, nonlinear autoregressive with exogenous input (NARX) models
are utilised, which are described by the following DT input/output
relationship (Giorgi, 2017; Giorgi et al., 2016a) (Ringwood et al.,
2016):

𝑦(𝑘) = 𝑔
[

𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑛𝑎),

𝜂(𝑘 − 𝑛𝑑 ), 𝜂(𝑘 − 𝑛𝑑 − 1),… , 𝜂(𝑘 − 𝑛𝑑 − 𝑛𝑏)
]

, (3)

where 𝑔 is a general function, 𝑦 is the body displacement, 𝜂 the FSE, 𝑛𝑎
and 𝑛𝑏 the dynamical order of the model, and 𝑛𝑑 the input delay index
(𝑇𝑑 = 𝑛𝑑𝑇𝑠 is termed the delay time). Details about the comparison
of DT and continuous-time models for wave energy applications can
be found in (Giorgi, 2017). In Eq. (3), the relationship between 𝜂 and
𝑦 is noncausal (Falnes, 1995), therefore, a 𝑛𝑑 < 0 is expected (Giorgi,
2017; Giorgi et al., 2016a) (Ringwood et al., 2016). As shown in Fig. 1,
the selection of a model is based on two main steps: model structure
selection, and dynamical order and delay time selection.

4.1. Model structure selection

4.1.1. ARX model structure
The first parametric model examined is the autoregressive with

exogenous input (ARX) model, for which, Eq. (3) becomes:

𝑦(𝑘) =
𝑛𝑎
∑

𝑖=1
𝑎𝑖𝑦(𝑘 − 𝑖) +

𝑛𝑏
∑

𝑖=0
𝑏𝑖𝜂(𝑘 − 𝑛𝑑 − 𝑖) (4)

It is a well-known black box model, linear in the parameters 𝑎𝑖 and 𝑏𝑖,
and with a linear input/output relationship (Ljung, 1999).

4.1.2. Nonlinear Kolmogorov–Gabor polynomial model
The second model considered in this paper utilises a polynomial

nonlinearity, yielding a KGP model (Nelles, 2001). In this case, Eq. (3)
becomes:

𝑦(𝑘) =
𝑝
∑

𝑗=1

[

𝑛𝑎
∑

𝑖=1
𝑎𝑖𝑗𝑦

𝑗 (𝑘−𝑖)+
𝑛𝑏
∑

𝑖=0
𝑏𝑖𝑗𝜂

𝑗 (𝑘−𝑛𝑑−𝑖)
]

(5)

where the cross-product terms (between 𝜂 and 𝑦) have been removed,
since the they can lead to potential and unpredictable stability prob-
lems (Giorgi, 2017; Giorgi et al., 2016a) (Ringwood et al., 2016), and
where 𝑝 is the maximum polynomial order for the terms involving 𝜂
and 𝑦 alone. The KGP model is a black box model having a nonlinear
input/output relationship, but has the advantage of being linear in the
parameters 𝑎𝑖𝑗 and 𝑏𝑖𝑗 .

4.2. Dynamical orders and delay time selection

The dynamical order of a parametric model is related to the number
of parameters utilised. By increasing the order, the model becomes
more flexible and able to show more complex dynamical behaviour
but, at the same time, unnecessarily high orders can make the model
less able to generalise on new data (i.e. overfitting) (Box et al., 1994).

Fig. 7. Loss function for experiment 𝐸1 (each vertical ‘line’ shows the results of the
310 𝑛𝑏 and 𝑛𝑑 combinations). For 𝑛𝑎 > 5 there is no relevant reduction of the LF (𝑛𝑎 = 5
is the correct value to obtain a parsimonious model structure).

Indeed, a model is identified by maximising its performance on a train-
ing data set but, if the model begins to ‘memorise’ the specifics of the
particular training data segment, rather than ‘learning’ to generalise,
the model has no value, other than being able to reproduce the training
data. In general, it is necessary to determine a parsimonious model
order (Soderstrom and Stoica, 1989) (Box et al., 1994) (Burnham and
Anderson, 2013), which will work well with the training data and, at
the same time, generalises well to other new data. Soderstrom states
the parsimony principle in (Soderstrom and Stoica, 1989): ‘Given two
or more possible models, which all explain the data well, the model
with the smallest order should be selected’.

In the case of nonlinear dynamic systems, the problem of model
order determination is still not satisfactorily solved. A widely applied
approach is to identify different models having increasing orders and to
select the best compromise between complexity and accuracy (Nelles,
2001), An indication that a correct model order has been selected is
provided by the fact that the model performance shows diminishing
returns beyond a certain order (Isermann and Mnchhof, 2011). In
this paper, the time delay and dynamical orders are estimated by
implementing a systematic trial and error process on several (linear)
ARX models (Giorgi et al., 2016a) (Keesman, 2011) (Chetouani, 2008;
Ringwood et al., 1993), with varying 𝑛𝑎, 𝑛𝑏 and 𝑛𝑑 , and selecting the
values which give the best model performance, as measured by a loss
function 𝐿𝐹 , which depends simultaneously on 𝑛𝑎, 𝑛𝑏 and 𝑛𝑑 . In total,
3100 different ARX structures are examined utilising all the possible
combinations of the integers 1 ≤ 𝑛𝑎 ≤ 10, 0 ≤ 𝑛𝑏 ≤ 9 and −20 ≤ 𝑛𝑑 ≤ 10
(it is possible to efficiently realise this calculation with the use of the
Matlab command arxstruc).

Since 𝑛𝑎 indicates the number of poles of the system, it is the most
important parameter and is the first to be estimated. In Fig. 7, the loss
function 𝐿𝐹 = 𝐿𝐹 (𝑛𝑎, 𝑛𝑏, 𝑛𝑑 ), for experiment 𝐸1, is plotted versus 𝑛𝑎,
where each vertical ‘line’ comprises marker points for the results of
the 310 𝑛𝑏 and 𝑛𝑑 combinations (0 ≤ 𝑛𝑏 ≤ 9 and −20 ≤ 𝑛𝑑 ≤ 10),
showing the range of LF for a specific value of 𝑛𝑎. With an objective
of minimising the LF, there is no relevant reduction in LF for 𝑛𝑎 > 5.
Very similar results are obtained for experiments 𝐸2, 𝐸3, 𝐸4, 𝐸5 and
𝐸6. These results indicate that 𝑛𝑎 = 5 is the correct value to obtain a
parsimonious model structure.

Once 𝑛𝑎 is selected, the next step is the estimation of 𝑛𝑏 and 𝑛𝑑 .
Plotting a different LF curve versus 𝑛𝑑 , for each value of 𝑛𝑏, shows that
the minimum of the LF occurs at different values for 𝑛𝑑 , depending on
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Fig. 8. Loss function curves for experiment 𝐸1 in the case of 𝑛𝑎 = 5 and 𝑛𝑏 = 0, 4 and 6. LF has a minimum at 𝑛𝑑 = −4 (if 𝑛𝑏 = 0), at 𝑛𝑑 = −7 (if 𝑛𝑏 = 4) and at 𝑛𝑑 = −8 (if 𝑛𝑏 = 6).
The curves move down and left with 𝑛𝑏 increasing from 0 to 4 to 6, as indicated by the black arrow.

Fig. 9. Loss function curves for experiment 𝐸1. By increasing 𝑛𝑏 the LF does not reduce anymore, this occurs when 𝑛𝑑 = −7, as shown by the vertical arrow (𝑛𝑎 = 5 has been
already identified). By further increasing 𝑛𝑏, the curves still move left but stop moving down, as shown by the blue arrow. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

the value of 𝑛𝑏. Indeed, Fig. 8 shows the LF curves for experiment 𝐸1
for the case of 𝑛𝑎 = 5 and 𝑛𝑏 = 0, 4 and 6; it is possible to see that
LF has a minimum at 𝑛𝑑 = −4 (if 𝑛𝑏 = 0), at 𝑛𝑑 = −7 (if 𝑛𝑏 = 4) and
at 𝑛𝑑 = −8 (if 𝑛𝑏 = 6). Fig. 8 also shows that the curves move down
and left as 𝑛𝑏 increases from 0 to 4 to 6, as indicated by the black
arrow in the picture. By further increasing 𝑛𝑏, the curves still move
left but stop moving down, as shown by the blue arrow in Fig. 9 with
𝐿𝐹 = 𝐿𝐹 (𝑛𝑎 = 5, 0 ≤ 𝑛𝑏 ≤ 29,−30 ≤ 𝑛𝑑 ≤ +10). The fact that the curves
stop moving down is relevant, since it gives a clear indication that there
is no advantage in introducing further complexity into the model, for no
gain in model fidelity (the minimum of LF stops decreasing). Plotting
different LF curves versus 𝑛𝑑 , on the same graph, for different value
of 𝑛𝑏, is useful to obtain a first indication for the value of 𝑛𝑑 . Indeed,
Fig. 9 shows that the minima of the curves stop decreasing for about
𝑛𝑑 = −7. For experiments 𝐸2, 𝐸3, 𝐸4, 𝐸5 and 𝐸6, the curves stop going
down for 𝑛𝑑 = −8,−5,−8,−9 and −11 respectively, suggesting a range
of −11 ≤ 𝑛𝑑 ≤ −5. Now that a range for 𝑛𝑑 is selected, the next step
is to find the associated range for 𝑛𝑏. Fig. 10 shows 𝐿𝐹 = 𝐿𝐹 (𝑛𝑎 =
5, 0 ≤ 𝑛𝑏 ≤ 20,−11 ≤ 𝑛𝑑 ≤ −5) versus 𝑛𝑏, for experiment 𝐸1. Each
vertical line shows the range of LF for a specific value of 𝑛𝑏, with 𝑛𝑎 = 5
and 𝑛𝑑 taking all the possible values between −11 and -5. In Fig. 10,
it is possible to see that the LF minima stop decreasing significantly

Table 2
Identified 𝑛𝑎, 𝑛𝑏, 𝑛𝑑 and 𝑛𝑝 from experiments
𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 and 𝐸6.
𝑛𝑎 𝑛𝑏 𝑛𝑑 𝑛𝑝
5 6 −8 2

for 𝑛𝑏 > 4. By applying the same procedure for experiments 𝐸2, 𝐸3,
𝐸4, 𝐸5 and 𝐸6, the LF ceases to reduce further for 𝑛𝑏 > 10, 7, 12, 7, 8
respectively. Therefore, the range 4 ≤ 𝑛𝑏 ≤ 12 associated with the
range −11 ≤ 𝑛𝑑 ≤ −5, is suggested. It is important to underline that
the objective is the identification of the simplest model structure, with
a consistent 𝑛𝑎, 𝑛𝑏 and 𝑛𝑑 for the different inputs (different FSE). The
use of an approximated model structure (ARX model) to describe the
data, results in different suggested values of 𝑛𝑏 and 𝑛𝑑 from different
experiments (however, the same 𝑛𝑎 = 5 has been identified from all
experiments). The multi-step predictions of the models are calculated
starting from the smallest 𝑛𝑏 = 4, and increasing in complexity until
good average multi-step model performance for experiments 𝐸1, 𝐸2,
𝐸3, 𝐸4, 𝐸5 and 𝐸6, is obtained. Good results are obtained for 𝑛𝑏 = 6
(and the associated 𝑛𝑑 = −8). Table 2 shows the identified values of 𝑛𝑎,
𝑛𝑏 and 𝑛𝑑 .
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Fig. 10. Loss function for experiment 𝐸1 (𝑛𝑎 = 5, −11 ≤ 𝑛𝑑 ≤ −5 and 0 ≤ 𝑛𝑏 ≤ 20). For
this experiment, no relevant reduction of the LF for 𝑛𝑏 > 4.

5. Validation

The model validation step, shown in Fig. 1, is an important aspect in
SI. The first model assessment is computed on the training data and, if
the results are not satisfactory with the training data, the model cannot
be accepted. This may be due to an incorrect model structure, which is
unable to describe the complexity of the process (Nelles, 2001), or the
identification algorithm may provide a parameter vector too far from
the optimal solution. In a case where the performance achieved on the
training data is acceptable, the real validation assessment comes when
the model is tested on new data, that is, when the model has to predict
the outcome of an experiment which was not used for the model param-
eter identification (Ljung, 2006). In order to deliver the training and
validation steps, the available data is divided into separate training and
validation data sets (Nelles, 2001) (Billings, 2013). Common methods
utilised for model validation are the 1-step (ahead) prediction test and
the multi-step (ahead) prediction test (Billings, 2013):

∙ 1-step (ahead) prediction test. The model output prediction, �̂�, is
calculated by utilising only the process measurements 𝜂 and 𝑦 (no
predicted past values of the output, �̂�, are used), as shown in Fig. 11(a).
At each time step, the prediction error 𝑒(𝑘) = 𝑦(𝑘)− �̂�(𝑘) is computed. 1-
step prediction tests are often not sufficient to show model inadequacy
and even models with low accuracy may generate almost perfect 1-step
predictions (Billings, 2013).

∙ Multi-step (ahead) prediction test. The mathematical model is initialised
by a few known measured output values and, successively, the model
output is calculated by the previous model predicted output, �̂�, and by
the given measured input, 𝜂, as shown in Fig. 11(b). Therefore, at each
time step 𝑒(𝑘) may quickly accumulate.

Different error metrics can be utilised to compare the model predic-
tion, �̂�(𝑘), with the measured signal, 𝑦(𝑘) (either for 1-step or multi-step
prediction); in this paper, the normalised root mean-squared error
(NRMSE) is utilised, defined as:

𝑁𝑅𝑀𝑆𝐸 =

√

∑

𝑘 |𝑦(𝑘) − �̂�(𝑘)|2
√

∑

𝑘 |𝑦(𝑘)|
2

(6)

The NRMSE metric is selected over other metrics, such as the MSE or
the mean absolute percentage error (MAPE), because the NRMSE is
normalised with respect to the magnitude of 𝑦(𝑘) (unlike the MSE), and
the NRMSE does not give a distorted picture of the error for 𝑦(𝑘) values
close to zero (unlike the MAPE). More details about the comparison of
MSE, MAPE and NRMSE can be found in (Giorgi, 2017).

Fig. 11. (a) 1-step prediction. (b) Multi-step prediction.

Fig. 12. In the case of single training, each experiment is divided in two parts: the first
70% time length part and the final 30% time length part (experiment 𝐸1 is shown).
Each model is trained with a 1-step prediction criterion on the first part and, once
identified, the model is used to make a multi-step prediction on the same first 70%
training part of the experiment, and a further multi-step prediction on the final 30%
validation part of the experiment.

6. Results

Since ARX and KGP models are linear in the parameters, each model
is trained with a 1-step prediction criterion, which leads to a convex
optimisation problem (the advantageous convex optimisation would be
lost by using a multi-step prediction criterion for the training). The
utilised 𝑛𝑎, 𝑛𝑏 and 𝑛𝑑 values are shown in Table 2. The models have to
describe the behaviour of the WEC in different sea states and, therefore,
different strategies to identify the model parameters are possible, as
presented in Sections 6.1 and 6.2.

6.1. Single training model

A first possibility to train a model, referred to here as single training,
is to identify a set of parameters for each available sea state and
for each model structure (in this case a total of 12 parameter sets).
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Fig. 13. Multi-step predictions of the identified models, in the case of the first 70% part of 𝐸1 (only a portion of the data is plotted). The models are identified with 1-step
prediction single training criterion, by using the training part of 𝐸1.

Fig. 14. Multi-step predictions of the identified models, in the case of the final 30% part of 𝐸1 (only a portion of the data is plotted). The models are identified with 1-step
prediction single training criterion by using the training part of 𝐸1.

Subsequently, the parameter set, corresponding to the present sea state,
is loaded into the model structure to predict the behaviour of the WEC.
As explained in Section 2.3, each available experiment is a realization
belonging to a different sea state (see Table 1). Each experimental
data set is divided in two parts: the first 70% time length part, for
model training, and the final 30% time length part, for model validation
(which is a common choice in system identification, data mining and
machine learning (Gholami et al., 2015; Lim et al., 2000) (Ljung, 2013).
Each model is trained with a 1-step prediction criterion on the first part
and, once identified, the model is used to make a multi-step prediction
on the same first 70% training part of the experiment, and a further
multi-step prediction on the final 30% validation part of the experiment
(see Fig. 12).

Table 3 shows the NRMSE multi-step prediction performance for
each model, on the 70% and 30% data parts, where KGP(p) is a
KGP model with maximum polynomial order 𝑝, as defined in Eq. (5).
Furthermore, the nonlinear KGP models are compared to the linear ARX
model, with a white background when the nonlinear model performs
better than the linear one, and with a red background when the
nonlinear model performs worse. The performance of the linear ARX
models is shown with a yellow background. In each experiment (apart
the final 30% of experiment 𝐸2), the multi-step prediction for the KGP
models, with 𝑛𝑝 = 2, is better than the multi-step prediction for the ARX
models, in both the initial 70% and final 30% parts, showing that there
is some nonlinearity in the data that the KGP model is able to describe.
Increasing 𝑛𝑝 to 3, the KGP multi-step prediction shows a degradation
in validation, compared to the KGP model with 𝑛𝑝 = 2, indicating that
𝑛𝑝 = 3 introduces excess complexity into the model and suggesting
overfitting. Similar conclusions apply for 𝑛𝑝 = 4, 5. Therefore, the

results indicate that the correct value to obtain a parsimonious KGP
model is 𝑛𝑝 = 2. Table 3 shows that all the identified ARX and KGP(2)
models generalise quite well. In Section 2.3, it is supposed that the
extent of hydrodynamic nonlinearity is rather limited in the utilised
experiments, because of the reduced relative body displacement. This
is confirmed by the fact that the NRMSE multi-step prediction of the
KGP models are smaller than the ARX models, but the improvement is
not significant, as shown in Table 3. Figs. 13 and 14 show the multi-step
predictions of the models (identified with a 1-step prediction criterion
on the first 70% part of 𝐸1) in the case of the training and validation
parts of 𝐸1, respectively.

6.2. Mixed training model

A second possibility for model identification, referred to here as
mixed training, is to obtain a unique set of parameters for each model
structure, able to describe the behaviour of the WEC in any sea condi-
tion. Therefore, only one ARX model and one KGP model having 𝑛𝑝 = 2
are identified. As in the case of single training, each experiment is
divided in two parts: the first 70% and the final 30%. The first 70%
of each dataset 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 and 𝐸6 are utilised together to
train the models with a 1-step prediction criterion. Once the models
are identified, they are validated with a multi-step prediction criterion
on the final 30% part of each experiment (each model is validated in
six different sea states), as shown in Fig. 15. The NRMSE multi-step
prediction performance for the models are shown in Table 4, where
the nonlinear KGP model is compared to the linear ARX model; with
a white background when the nonlinear model performs better than
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Table 3
NRMSE models multi-step prediction performance, in the case of single training model. The nonlinear KGP models
are compared to the linear ARX model, with a white background when the nonlinear model performs better than
the linear one, and with a red background when the nonlinear model performs worse. The performance of the
linear ARX models is shown with a yellow background.

Table 4
Validation NRMSE models multi-step prediction performance, in the case of
mixed training model. The nonlinear KGP model is compared to the linear
ARX model; with a white background when the nonlinear model performs
better than the linear one and with a red background when the nonlinear
model performs worse. The performance of the linear ARX model is shown
with a yellow background.

the linear one and with a red background when the nonlinear model
performs worse. The performance of the linear ARX model is shown
with a yellow background. The validation of the models shows that,
in experiments 𝐸1, 𝐸4, 𝐸5 and 𝐸6, the multi-step predictions of the
KGP model, with 𝑛𝑝 = 2, are better than the multi-step predictions of
the ARX model. Therefore, in the data there is some small nonlinearity
that the KGP model is able to describe, even if the improvement is not
significant.

6.3. Single and mixed training model comparison

At this point, the following question is posed: to obtain a good
prediction for a particular sea state, is it better to train the models
only on the same sea state (to tune the models only for the specific
sea condition), or it is always better to train the models using all the
information available, even if the extra information is from different
sea states? In order to try to answer this question, the performance of
the models identified with single training, shown in Table 3, and with
mixed training, shown in Table 4, are compared in Table 5, where the
boxes in white indicate that the model identified with single training
performs better than the model identified with mixed training trained,
and in red when it performs worse. The results show that, in the case of
the available experimental data, there is not a clear answer regarding
the use of single or multiple sea state data.

Fig. 15. In the case of mixed training, the first 70% of each dataset 𝐸1, 𝐸2, 𝐸3, 𝐸4,
𝐸5 and 𝐸6 are utilised together to train the models with a 1-step prediction criterion.
Once the models are identified, they are validated with a multi-step prediction criterion
on the final 30% part of each experiment (each model is validated in six different sea
states).
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Table 5
Comparison of validation NRMSE models multi-step prediction performances in the cases of single and mixed
training. The NRMSE values with a white background indicate that the model identified with single training
performs better than the model identified with mixed training trained, and with a red background when it
performs worse.

Table 6
Validation NRMSE models multi-step prediction performances, in
the case of interpolation/extrapolation model ability. The nonlinear
KGP models are compared to the linear ARX model, with a white
background when the nonlinear model performs better than the linear
one, and with a red background when the nonlinear model performs
worse. The performance of the linear ARX models is shown with a
yellow background.

6.4. Model interpolation/extrapolation ability

The space of sea states, described in terms of 𝐻𝑠 and 𝑇𝑝, is usually
discretised by selecting a finite number of 𝐻𝑠 and 𝑇𝑝 values. The level of
discretisation is a compromise between the total number of sea states
and the accuracy of each sea state description. The identification of
models with a larger number of sea states requires more experiments
and, consequently, a larger number of model parameter sets to inter-
polate between. Therefore, the number of utilised sea states should be
limited, and the models should be able to describe any sea condition, by
interpolating/extrapolating the information, provided from the known
sea states. In the case of the present scaled Wavestar WEC, six different
experiments are available from six different sea states.

In order to test the ability of the identified models, in interpo-
lating/extrapolating the data, each model is trained with a 1-step
prediction criterion, by simultaneously using 100% of five experiments
and, once identified, is validated with a multi-step prediction measure
on 100% of the sixth missing experiment. In total, the procedure has
been repeated six times, each time by changing the sixth validat-
ing experiment, as shown in Table 6, which shows that the NRMSE
multi-step prediction model performance is marginally poorer than the
NRMSE multi-step prediction model performance in Table 4, (where
the models are trained using the first 70% of all six experiments). The
results indicate a good ability of the models to interpolate/extrapolate
the information provided from the known sea states to predict an
unknown sea condition. Also, in this case, in each experiment (apart
from experiment 𝐸2), the multi-step prediction for the KGP models with
𝑛𝑝 = 2 is better than the multi-step prediction for the ARX models.

7. Conclusions

The framework for hydrodynamic discrete-time model identification
(already applied to numerical wave tank data in previous work (Giorgi,
2017; Giorgi et al., 2016a) (Davidson et al., 2016, 2015) (Ringwood
et al., 2016) in this paper, is successfully broadened to the context
of experimental data, gathered at the COAST Laboratory, where hy-
drodynamic tests were carried out on a scaled Wavestar wave energy
converter point-absorber, attached to a hydraulic PTO, having a control
strategy described by Eq. (1). Since both linear and nonlinear models
employed present a ‘linear in the parameters’ identification problem,
they are assured of achieving global fitting error minima, facilitating a
consistency of comparison. Furthermore, this research showed that the
models employed are computationally simple and fast to identify and
run.

For the tank tests considered, the device essentially behaves as a
wave follower (due to the PTO setting and control strategy utilised in
the tank experiments), and little benefit of the nonlinear model (over
the linear) is evident. As a result, the appropriate nonlinear polynomial
order is a modest 2. One notable issue, in the determination of the
appropriate dynamical model orders, is the lack of clear indication,
compared to the case for numerical tank data. This is, no doubt due to
the added presence of measurement noise and other parasitic effects.
Nevertheless, reliable models are identified with encouraging values
of model fit. The use of multiple data sets helps in the consistent
estimation of model structure and parameter identification.

An interesting potential future study would involve the use of a dif-
ferent PTO control strategy on the same Wavestar device, which would
create a more significant relative body displacement and/or velocity
and introduce, in this way, more nonlinear hydrodynamic effects into
the system. However, the same identification framework, presented in
this work, could be employed, though with the possible result of ARX
and KGP models having different dynamical and maximum polynomial
orders to adapt to the behaviour of the new WEC-PTO system. With
such new data, the nonlinear KGP model is likely to show a superiority
compared to the ARX model, as evidenced in (Giorgi et al., 2016a).
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